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A recursive algorithm for computing the direct scattering transform (DST) of a discrete 

space or time series whose dynamics is described approximately by the infinite-line 

Kortewegde Vries (KdV) equation is tested for numerical accuracy by considering several 

example problems for which the exact DST spectrum is known. The effects of truncation, 

roundoff, discretization, and noise errors are specifically addressed. Procedures for estimating 

errors in a general experimental context are developed and the nonlinear filtering of noise is 

discussed. f? 1991 Academic Press, Inc. 
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1. INTRODUCTION 

The Korteweg-de Vries (KdV) equation arises as a canonical model equation in 
a variety of physical problems [ 11. In a fluid dynamical context the KdV equation 
on the infinite interval describes the evolution of one-dimensional, localized long 
waves in shallow water (a Cauchy problem): an initial wave pulse (Fig. la) evolves 
into solitons and dispersive radiation in the far field (Fig. ic). In this paper we are 
primarily concerned with computing the nonlinear Fourier, temporally invariant 
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FIG. 1. An initial wave (depicted in (a)) evolves in the far field into solitons and a radiative tail 

(c). The DST spectrum of the initial wave, reported in (b), contains information about the far-field 

evolution of the initial wave. In this panel the upper solid curve represents a saturation spectrum and 

the intermediate solid curve is the DST continuous spectrum. The discrete soliton eigenvalues (two in 

this situation) are represented by solid vertical lines. 
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spectral amplitudes of this wave motion (Fig. 1 b); in the spectrum the solitons are 
represented by the vertical lines and the radiation spectrum is the continuous curve. 
The nonlinear spectral solution to the Cauchy problem for the KdV equation on 
the infinite interval was found by Gardner, Greene, Kruskal, and Miura [2]. 
For a review and extension of these mathematical methods to other physically 
interesting problems see [ 1, 3-71. A key feature of this approach is that it may be 
viewed as a generalization of Fourier transform theory and is normally referred to 
as the inverse scattering transform. In the companion paper ([S], hereinafter 
referred to as I) we review the spectral structure of this theory and derive a two- 
point recursive algorithm for computing the direct scattering transform (DST) of a 
localized wave field. The motivation for developing the DST algorithm is to provide 
a tool for probing the spectral structure of nonlinear experimental or computer 
generated data supplied in the form of space or time series. 

One aim of the present paper is to apply the DST algorithm to a number of 
situations for which exact answers are known. The comparison between exact and 
numerical results allows for the validation of the numerical procedures. We explore 
the effects of truncation and roundoff errors on the spectrum; errors introduced by 
the discretization of the input wave form are also considered. We further consider 
procedures for applying the numerical DST to the analysis of data contaminated by 
random noise. 

The DST algorithm was developed by analogy with the discrete, finite Fourier 
transform. The requisite nonlinear spectrum is a wavenumber representation of a 
wave field (as a function of space x) which is frozen at some arbitrary time to. 
Alternatively it may be viewed as a frequency domain representation of a wave field 
which varies as a function of time t and corresponds to some fixed spatial location 
x0. Just as the Fourier transform is a wavenumber or frequency domain representa- 
tion of some linear wave motion, the DST is a spectral representation of nonlinear 
wave motion described by the KdV equation. Like the Fourier transform the DST 
has the important property that the spectrum evolves simply in time: the spectral 
amplitudes are constants while the phases vary sinusoidally (continuous spectrum) 
or exponentially (soliton spectrum). Exploitation of this simple motion in an 
experimental and numerical context has provided a prime motivation for applying 
the DST approach as a kind of nonlinear Fourier analysis [9-161. Several impor- 
tant features of the approach taken here are that the DST algorithm: (a) is 
relatively fast and allows for efficient machine analysis of space or time series of 
several thousands of points; (b) is rather general in that it may be applied to any 
space or time series which is governed approximately by the Kortweg-deVries 
equation; (c) has relatively high accuracy and allows for a rather precise determina- 
tion of the nonlinear spectrum; and (d) allows for the nonlinear filtering of selected 
spectral components and of noise. Another important characteristic of the DST 
algorithm given herein is that it is easily extendable to the case of periodic 
boundary conditions [ 17, 181. 

The remainder of this paper is organized as follows. In Section 2 we consider 
some of the possible physical applications of the DST approach and in Section 3 
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we discuss the implementation of the numerical algorithm for the DST. In Section 4 
we consider cases for both positive and negative square wave pulses, whose spectra 
are known analytically (see I); these serve as controls for the numerical checkout 
of the DST algorithm and provide information about truncation and roundoff 
errors. A comparison between the DST spectrum and the linear Fourier spectrum 
is also considered. In Section 5 we compare the DST algorithm with the N-soliton 
solution of the KdV equation. Even though no continuous spectrum is theoretically 
present in this case, the discretization procedure used herein, and its associated 
numerical algorithm, compute some finite (albeit small) value for the continuous 
spectrum. Thus this series of tests provides a measure of numerical uncertainties in 
the continuous spectrum; we provide procedures for estimating these discretization 
errors. In Section 6 we consider cases where random errors are superposed on 
theoretically known input wave forms. This provides a basis for estimating the 
effects of noise error on the DST spectrum for certain types of experimental data. 
Procedures for the removal of noise from data by nonlinear filtering are also 
considered. A summary and conclusions are provided in Section 7. 

2. SPECTRAL ANALYSIS OF SPACE AND TIME SERIES 

We consider here the case of unidirectional, weakly nonlinear waves in shallow 
water in 1 (space) + 1 (time) dimensions for which the canonical governing partial 
differential equation (PDE) is the Korteweg-de Vries equation (see (2.1) and 
further discussion below) whose field is the wave amplitude ~(x, t). The time evolu- 
tion of wave motion of this type may be thought of in terms of a Cauchy problem: 
given the state of the system at some time f,,, ~(x, to), determine the motion at some 
future (or past) time f, q(x, t). Alternatively, one may seek to solve the related 
boundary ualue problem: given the temporal evolution of some system at a fixed 
spatial location x0, yl(x,, t), determine the behavior of the motion at some other 
spatial location x, V(X, t). This latter problem is not solvable by the conventional 
form of the KdV equation. Both of these kinds of descriptions are said to be 
Eulerian: the dynamical variable of interest (a(~, t)) is a function of the independent 
variables space x and time t. In experiments one normally measures (1) time series 
of the wave motion at a selected fixed spatial location, ~(x,,, t), or (2) space series 
at a fixed time, q(x, r,). 

The dimensional form of the conventional or “space” Eulerian KdV equation is 
given by 

I?r+c’o’1~+wL+hYY, =Q (2.1) 

where co, Z, /I are real constants. For surface water waves c0 = (gh)‘“‘, CI = 3co/2h, 

and p = coh2/6, h is the water depth, g is the acceleration of gravity. An important 
quantity in the following analysis is also iv = or/6fi or equivalently, for water waves, 
j. = 3/2h3. Other fluid mechanical applications of the KdV equation have been 

581f94.2-5 
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found for internal wave motions [19] and for geophysical fluid dynamical (GFD) 
motions [6, 2&24]. The KdV equation (2.1) is normally derived from the Euler 
equations with a (singular) perturbation expansion in powers of the nonlinearity 
parameter E = Iqo/hl and of the dispersion parameter 6’ = (h/L)*, where v0 is a typi- 
cal wave amplitude and L is a typical wavelength. The KdV equation is obtained 
by assuming E 4 1, 6* 6 1, where E z d2; KdV is accurate to order E (i.e., to first 
order in nonlinearity). Equation (2.1) solves the Cauchy problem: the time evolu- 
tion ~(x, t) of a localized initial wave ~(x, 0) is determined by (2.1) for all t > 0 such 
that -cc <x < IX. We may also determine the (nonlinear) Fourier spectrum 
(scattering transform) of the initial wave ~(x, 0) by the methods discussed here 
and in paper I. 

From an experimental point of view, however, one normally measures ~(0, t); 
given this single time series, Eq. (2.1) is not a well-posed problem and the spatial 
evolution of the wave ~(x, t) cannot be found purely from the space KdV equation, 
nor can spectral analysis of the time series ~(0, t) be conducted. In order to con- 
front this difficulty we consider an alternate form of the KdV equation proposed by 
Karpman [25] and Ablowitz and Segur [l] (see also Osborne et al. [26]). This 
is given by 

TX + 497, + a’w, + B’ulm = 0, (2.2) 

where 

cd = l/c,; a’ = a/c;; p’ = -p/c;. (2.3) 

We refer to Eq. (2.2) as the “time” KdV equation (because of the time derivatives 
in the dispersive term); this equation is well defined as a boundary value problem, 
so that given ~(0, t), then (2.2) evolves the wave over all space ~(x, t). Segur [l, 271 
has given a rigorous derivation of (2.2) using the singular perturbative approach 
(see also Newell [28], Osborne et al. [26,29]); (2.1) and (2.2) are both accurate 
to first order in 8 and h2 and, based upon singular perturbation theory, there is no 
way to state which of these equations may be preferable to the other. It remains for 
experiments to decide whether one equation is preferable to the other for large E. 

Note that (2.2) has the form of the KdV equation except that the roles of space 
x and time t have been reversed and the constant coefficients have been changed. 
This reversal of the emphasis on space and time means that the direct scattering 
transform algorithm may be used to analyze both space and time series. For space 
series one of course obtains a wavenumber spectrum as discussed at length in 1. For 
the analysis of time series it is easy to show that a simple change of variable is 
required in going from the spectral problem for (2.1) to that for (2.2): 

A -+ cii., K,-+ Q,; k + o; x + t. (2.4) 

This implies that a DST analysis of a time series may be conducted by reinter- 
preting: (1) the wavenumber as frequency, (2) space as time, and (3) resealing the 
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parameter i; by ci. The spectral domain now is in terms of the discrete and con- 
tinuous frequencies Q,, w, rather than in terms of wavenumbers K,,, k. 

Finally, we recall that a different approach to the description of wave motion is 
based on the use of Lagrangian coordinates: in this case the emphasis is on follow- 
ing the individual particles in the fluid. Dynamically one seeks to determine the par- 
ticle position X(a, t) as a function of the reference position a of the particle and 
time t. The reference position a is generally considered to be the rest position of the 
particle for, say, t -+ --cc. For unidirectional water waves the motion is in vertical 
planes perpendicular to the wave crests, thus X = (X, Y) and a = (a, b), where X 
and a refer to the horizontal motions, while Y and b refer to the vertical motions. 
One thus obtains a set of partial differential equations for X(a, h, t) and Y(a, h, t), 
where now the particle positions X are the dynamical variables and their reference 
positions a and the time t are the independent variables. The Cauchy problem for 
the Lagrangian description is thus: given all the particle positions X(a, to) at time 
f,,, for all possible values of the reference position a, determine the positions X(a, t) 
of all the particles at some future (or past) time t. The analogous related houndur~~ 
aalue problem is: given the temporal evolution of some particle whose reference 
position is the particular value a,, X(a,, t), determine the motion of all the particles 
for all possible values of reference position a, X(a, 1). An important result in the 
context of Lagrangian coordinates is that the particle orbits for shallow-water, 
weakly nonlinear wave motions at the KdV order of approximation are described 
by partial differential equations which have the same functional form as the 
Eulerian KdV equation, see [26]. Thus, the nonlinear spectral approach discussed 
in this paper may be immediately applied also to the case of Lagrangian coordinates. 

3. IMPLEMENTATION OF THE ALGORITHM 

We seek to implement the algorithm for the direct scattering transform of a 
discrete wave form described by a discrete space series of A4 values of the wave 
amplitude separated by some (presumed small) value of spatial interval dx, 
f \Yn, = ~(x,,,, to); x,=x0 fmdx, m = 1, M). The equivalent problem on the time 
domain is obtained by substituting the scaling (2.4). As discussed in I we take the 
first two and last two points in {qm} to be zero. We now briefly discuss the recursive 
procedure for determination of the DST spectrum of this array of points. The 
nonlinear DST spectrum for the KdV equation in the space domain is given by 

DST= {Km C,,, N; b(k)), 

where the K, and C, are the wavenumbers and phase coefficients of the N solitons 
and b(k) is the continuous spectrum. For finite b(k) and N = 0 the spectrum con- 
tains only radiation; for N finite and b(k) = 0 the spectrum contains only solitons. 
Further details are given in I. 
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To compute (3.1), given (q,}, we first compute the spectral matrix M(K) by: 

M = BM’A, (3.2) 

where 

-ih.(xo+ A.q’2) 0 

0 er~( ~0 + Ar;Z) 1 
and 

A= C 
eK(xw- dr/2) 0 

0 1 e-iK(q, -Ar/2) ’ 

(3.3) 

(3.4) 

The matrix M’ is given by 

M-- I 
M’= fl AT,, (3.5) 

m = I 

where the “delta T,” matrix is a function of the discretization interval dx and not 
of x,. We write the matrix AT, in a form suitable for recursive computation 

(3.6) 

where 

5, = {Lq(x,,,, 0) + ti2}lj2 (3.7) 

z = eiAy (3.8) 

(3.9) 

s 
,)1 = (Lx + in, + 1) 

x,,, 
(3.10) 

The matrix M’ may then be written as 

M-l 

M’= rI AT, = 

z-“~-lFMM ,(z) z-IJ.\GIG 
M-~ I(Z) 

m  = 1 
ZpM-‘G &1(1/Z) 1 z”“-‘F&,(1/Z) ’ 

(3.11) 

such that F,(z) and G,(z) satisfy the recursion relations 

(3.12) 

with 

F,(z) = 1, G,(z) = 0 (3.13) 
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and 

p,+-, =;y i,. (3.14) 
,,1 = 1 

Recursion formulas (3.12)-(3.14) for the direct scattering transform are analogous 
to the recursion formula (5.6) given in I for the Fourier transform. Execution of 
(3.12) requires M’ operations as one iterates over space x and wavenumber K. It 
is worth pointing out that the recursion relations for [F,(z), G,,(z)] and [Fnl( l/z), 
G,,( l/z)] do not functionally depend on one another. Since we need only matrix 
elements M,, and M,? to compute the DST and since by (3.11) we need only 
F Mum ,(z) and G,W_ ,(z), then to calculate the infinite-line DST spectrum it is not 
necessary to compute the [F, , ( l/z), G,,- , (l/z)]. This reduces the computational 
time by an additional factor of two. 

Note that the spectral matrix is a function of the input wavenumber IC, which can 
be either pure imaginary (ti = iK,,), when searching for the soliton part of the spec- 
trum, or real (K = k/2), when computing the continuous spectrum. The continuous 
spectrum is computed from the simple formula 

h(k) = -~,*WY~,,W). (3.15) 

The discrete spectrum is determined from the zeros of M,, : 

M,,(iK,)=O, (3.16) 

where the phase coefficients are found by 

C’i = ,IeK,, (K-K,,) b(iK). (3.17) 

The number of solitons is computed from the transmission coefficient a(k), 

N = JirnX [arg(a(k)) - arg(a( -k))]. (3.18) 

To compute the radiation spectrum (3.15) one needs to determine both an upper 
limit and a resolution for the wavenumber. Since the spectrum is theoretically 
continuous we can make the resolution as small as we choose. However, for 
convenience we have elected to use a wavenumber cutoff and resolution consistent 
with periodic Fourier theory. Thus we use the Nyquist cutoff given by 

k, = n/Ax (3.19) 

and a spectral resolution 

Ak = 2k,lM. (3.20) 
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A flow chart of the major features of the program is shown in Fig. 2 and details 
of the continuous and discrete spectral calculations are given in Fig. 3. We compute 
the continuous spectrum first (flow chart CONDST in Fig. 3a). The program flow 
chart is built around the call to the subroutine called MMAT which computes the 
spectral matrix by Eq. (3.2)-(3.14). 

The flow chart for the discrete spectrum is shown in Fig. 3b. Here the wave- 
number range extends to the maximum possible theoretical value given by 

K max = (4nlax)1’2. (3.21) 

Note that imaginary wavenumber K = iK is iterated in the range (0, K,,,) and the 
subroutine MMAT is called on each iteration. If there is a sign change in the matrix 
element M,,(iK) then the subroutine NEWTON is called to reline the estimate of 
the eigenvalue which is labeled K,. NEWTON also computes the phase coefficients 
C,, by (3.17) after the search for the eigenvalue is complete. Note that the DST 
algorithm uses computer time proportional to M*; thus doubling the number of 
points It4 increases the computer time by about a factor of four. 

4. INVESTIGATION OF ROUNDOFF ERRORS 

In this section we consider the application of the DST algorithm to an initial 
square wave pulse centered on the origin. For this particular problem the exact 
spectral solution of the scattering transform is known (see I) and it is thus possible 
to estimate the truncation and roundoff errors of the associated DST spectrum. We 
also use the case for a square input wave form to introduce a graphical representa- 
tion and interpretation of the DST spectrum. In the following: (a) we compare the 
DST with the linear Fourier spectrum of the same wave in order to clarify some of 
the principal physical differences between linear and nonlinear Fourier analysis; (b) 
we compare the numerical DST with the exact analytical solution; and (c) we con- 
sider the effects of truncation errors in the input wave form. For the calculation of 
the DST and Fourier spectra discussed in this paper we used a vector processor 
FPS 164 (with 64-bit precision) attached to a host computer Digital VAX/750. 

4.A. Negative and Positive Square Waves-Comparison between the DST Spectrum 
and the Linear Fourier Spectrum 

We consider here a comparison between the DST and the linear Fourier trans- 
form for both negative and positive square waves. We first consider negative square 
waves with fixed half-length 100 cm (the square wave lies in the interval 
- 100 cm < x < 100 cm with amplitudes ‘lo = -0.1 cm, -0.5 cm, - 1 .O cm, and 
-4.0 cm). The water depth is fixed to be h = 10 cm and thus the nonlinearity 
parameter E = jqo/h( varies from E = lo-* to E = 0.4. Here and in the following the 
input square wave form is placed on the interval - 250 cm <x d 250 cm and thus 
L = 500 cm. The DST spectra for these waves are reported in Fig. 4a-d. In the case 
of a negative square wave the soliton spectrum is absent and only the continuous 
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Inputs: 

ETA(I) = Space or time series of M points. 
Ax = Discretization interval of space or time series. 
c,, = Linear phase speed in KdV equation. 
a = Coefficient of nonlinear term in KdV. 
p = Coefficient of dispersive term in KdV. 
h = o!f2p 
Ispace = 1 for a space series, 0 for a time series 
IF(Ispace.eq. I) (ETA(I)=h*ETA(I),I=l,M) 

IF(Ispace.eq.0) (ETA(I)= c$%*ETA(I),I=l,M) 

Call CONDST 

Ikb(k)l 

ompute Continuous spectrum 

7 
Call DISDST 

K&J 

Compute Discrete spectrum 

i? 
End 

323 

FIG. 2. Flow chart of the numerical DST algorithm. 
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(ZjG-) a 

Inputs: 

NK = Number of K values desired in spectrum. 

DELK =AK resolution in spectrum. 

KMIN = Starting value of K in spectrum. 

K = (KMIN,O) = k/2 

Call MMAT 
\ 

M = M(k/2) 

Compute transfer matrix by recursi 

Reflection Coefficient and Discretization Correction 

sin(kAx/2) 
SW4 = ckAxn, 

M,,WJ 
b(k) = -- 

II 

F&k) = klb(k)l/S(kAx) 

K = K + DELK 
N=N+l 

No 

FIG. 3. Flow chart for the numerical calculation of the continuous DST spectrum (a) and of the 

discrete (soliton) spectrum (b). 
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Inputs: 

JK= Number of K values desired in discrete spectrum 

DELK = AK resolution in discrere spectrum 

KMIN = Swting value of K in dwreie spectrum 

N = 0. initial number of solitons found in spectrum 

K = (0,KMIN) = ir 

<<:\, 

Compule transfer matrix by recursion 

t 

MllP = Ml1 

Ml1 = I$,(%) 

Call NEWTON 

&C” 

Computediscrete eigenvalue 

FIG. 3-Continued 
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FIG. 4. DST spectra for a negative square wave with fixed half-length 100 cm and varying amplitude 

qO= -0.1 cm (a), qO= -0.5 cm (b), qO= - 1.0 cm (c), and q,,= -4.Ocm (d). No discrete spectrum is 

present for negative square waves. The upper solid curve represents a saturation spectrum, the inter- 

mediate solid curve is the DST continuous spectrum, and the dashed curve is the Fourier spectrum. 
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FIG. 4-Continued 

spectrum is excited. In Fig. 4 the DST spectrum is represented by a solid line and 
the Fourier spectrum by a dashed line; we have graphed the spectral amplitudes, 
but not the phases. The continuous DST spectrum is graphed as 

s(k) = k Ib(k)l/AL, (4.1) 

to be consistent with the periodic KdV spectrum (Osborne and Bergamasco 
[ 17, IS]). This normalization by i.L allows direct comparison between the soliton 
amplitudes and the “radiative amplitudes” of the continuous spectrum; these latter 
may be viewed as spectral components which, through the Gelfand-Levitan 
Marchenko equation (see I), nonlinearly superpose to give the radiative solution 
one observes in space-time. The upper solid line in Fig. 4 is a saturation curve which 
corresponds to the reflection coefficient Jb(k)( = 1. The continuous DST spectrum 
cannot exceed this value, since b(k) is constrained by the requirement [b(k)1 d 1. 
For the linear Fourier spectrum F(k) we have graphed IF(k)j/AL; this normaliza- 
tion allows direct comparison with the continuous DST spectrum. 

From Fig. 4 one sees that for very small amplitudes the continuous DST spec- 
trum and the Fourier spectrum are quite similar. At large amplitudes, however, the 
differences are more and more pronounced due to stronger nonlinear interactions. 
Comparing the linear Fourier spectrum and the DST spectrum for negative square 
waves of moderate amplitude we find that (1) substantial differences occur at low 
wavenumbers (where there is the possibility of a saturation in the DST spectrum) 
and (2) at high wavenumbers where the linear and nonlinear spectra are often quite 
similar, but with the spectral lobes wavenumber-shifted relative to one another. 

In Fig. 5a-d we show the DST spectra obtained for positive square waves with 
half-length 100 cm and amplitudes, respectively q0 = 0.1 cm, yl,, = 0.5 cm, r0 = 1.0 cm, 
and q0 = 4.0 cm. The DST spectra now possess both a continuous and a discrete part. 
The discrete spectrum is represented by the vertical lines in Fig. 5. Each vertical 
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k-cm.’ 
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10” f  
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FIG. 5. DST spectra for a positive square wave with fixed half-length 100 cm and varying amplitude 

q0 = 0.1 cm (a), q0 = 0.5 cm (b), q,, = 1.0 cm (c), and q0 = 4.0 cm (d). The upper solid curve represents a 
saturation spectrum, the intermediate solid curve is the DST continuous spectrum and the dashed curve 

is the Fourier spectrum. The solid vertical lines represent the discrete soliton eigenvalues. 



NONLINEAR FOURIER ANALYSIS FOR KdV, II 329 

0.1 

k cm-’ 

FIG. S-Continued 

line is the spectral representation of a soliton; the horizontal position of the line 
is determined by the wavenumber K, of the soliton and its height by the soliton 
amplitude qn. Since for the KdV equation the amplitude and the wavenumber of a 
soliton are related by q,, = (2Ki/;1) 1’2, it is clear that once the horizontal position 
of an arrow is given (i.e., the wavenumber) also its height is fixed. In this graphical 
representation we discard the phase information of the discrete eigenvalues, as we 
have also done for the continuous spectrum. In the present numerical experiment 
the number and the amplitude of the discrete eigenvalues (i.e., the solitons) increase 
with increasing initial amplitude q0 of the positive square wave. Another effect is 
that for large wave amplitudes the continuous DST spectrum shows a tendency 
toward saturation ([b(k)1 = 1) at low wavenumbers. We also observe that the con- 
tinuous DST spectrum of the positive square wave forms is always smaller than the 
continuous spectrum of the corresponding negative waves (i.e., of square waves 
with amplitude -y0 and equal half-length). This behavior, which is to be con- 
trasted with the symmetry of the Fourier spectrum IF(k)1 with respect to the change 

ylo + -?o, is due to the fact that for positive square waves a large portion of the 
energy is contained in the soliton (discrete) spectrum, and thus the energy content 
of the continuous DST spectrum is correspondingly depleted. For negative square 
waves no discrete spectrum is present and all the energy is contained in the con- 
tinuous spectrum. This fact is a consequence of the well-known lack of symmetry 
of the KdV equation for changes of the kind ~(x, t) + -q(x, t). 

In Fig. 6aac we show the DST and linear Fourier spectra for three positive 
square waves with fixed amplitude q. = 1 cm (E = 0.1) for differing half-lengths 
20 cm, 50 cm, and 200 cm, respectively (S2 =0.0625, 0.01, and 0.000625, respec- 
tively). The number of solitons and the tendency to saturation of the continuous 
spectrum increases with increasing values of the half-length. Due to the large wave 
amplitude chosen, differences between the linear and nonlinear spectra can be seen 
for all values of the half-length. 
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FIG. 6. DST spectra for positive square waves with fixed amplitude ‘lo= 1 cm and varying half- 

length 20 cm (a), 50 cm (b), and 200 cm (c). Same details as in Fig. 5. 
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4.B. Negative and Positive Square Waves-Comparison with the Exact Solution 

The DST spectrum for an initial square wave may be computed exactly by 
requiring the continuity of the Schroedinger wave function and of its first derivative 
at the right and left discontinuities of the wave (see I). To compare the numerical 
DST spectrum with the exact formulae we have chosen the same groups of exam- 
ples already discussed above. Because the input wave form is exactly a square wave 
no discretization error is present in these cases, thus the roundoff errors inherent in 
the DST algorithm may be evaluated in detail. In all these examples we have found 
the DST algorithm to be quite precise and the results are practically 
indistinguishable from the exact values. Roundoff errors occur in the recursive 
calculation of the M(K) matrix, where 4N multiplications are required to compute 
(3.11), (3.12) for a selected wavenumber. This implies that for typical space series 
of NZ lo4 points one loses about two decimals of accuracy in the elements of the 
M(K) matrix, a fact we have verified by comparison of the analytical solution for 
the DST of a square wave to the numerical DST algorithm. Using double precision 
arithmetic implies an accuracy of 13 or 14 decimal digits for the elements of the 
M( IC) matrix. 

4.C. The Effects of Input Precision on the DST Spectrum 

We now briefly explore the effects of changing the precision of the input wave 
form and discuss how the DST spectrum is sensitive to these changes. We consider 
a square wave with half-length 100 cm and ‘lo = 4/3 cm on a water depth h = 10 cm. 
In this case a low input precision implies a truncation of the wave amplitude and 
we expect to observe some differences in the DST spectra. Figure 7 reports the 
spectra obtained for an input precision of 16 significant figures (solid line) and of 
two significant figures (dashed line). There are visible differences between the two 

10’ 

g lo0 

8 
,g 10.’ 

Ii 1o-’ 

z 

is 10” 

10’ 

0.1 

k-cm-’ 

FIG. 7. DST spectra for a positive square wave with half-length 100 cm, and amplitude q0 = $ cm for 

varying input precision. The solid line is for an input precision of 16 significant digits and the dashed 

line is for an input precision of two significant digits. 
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TABLE1 

Relative Difference between the Exact and 

Numerically Computed Discrete (Soliton) 

Eigenvalues for Different Input Precison in 

the DST Algorithm for a Positive Square Wave 

Number of significant 
figures 

4 
5 
6 

8 
9 
10 

6.1 x 10-l 
6.5 x 10-2 
6.5 x 10-3 

6.5 x 10” 
6.5 x 10-S 
6.5 x 104 
6.5 x 10-7 

6.1 x 10-s 
1.2 x 10-s 

< IO-10 

AMll 

3.4x 
3.4 x 10-2 
3.4 x 10-3 
3.4 x IO-4 

3.4 x 10-5 

3.4 x 10-6 
3.9 x 10-7 

5.5 x 10-B 
< 10-10 
< 10-10 

A7131713 

2.7 x IO-’ 

2.7 x lO-2 
2.7 x 10-3 
2.7 x 10-4 

2.7 x lO-5 
2.7 x 10-h 
2.5 x 10-7 

< IO-10 

< 10-10 
< 10-10 

Note. Amplitude q0 = 4 cm and half-length 100 cm. 

spectra which are generated by the fact that one spectrum corresponds to an 
amplitude y0 = 1.333333333333333 and the other to qo= 1.3. Table I reports the 
amplitudes of the three solitons found for several values of the input precision. The 
results reported in Table I indicate that the errors in the soliton amplitudes are 
always of the same order of magnitude as the errors on the input wave form. This 
implies the important result that the truncation errors on the input wave are not 
amplified by the DST algorithm. The precision of the input wave form is essentially 
reflected in the spectral amplitudes found by the DST algorithm. 

5. INVESTIGATION OF DISCRETIZATION ERRORS 

In this Section we analyze the results of the DST algorithm for the pure N-soliton 
solutions of the KdV equation. This particular class of solutions is given by an 
exact expression which is discussed in the Appendix. Theoretically speaking, the 
DST spectrum of a pure N-soliton wave form is composed of N discrete eigen- 
values, while the continuous spectrum is identically zero. Here we generate an 
N-soliton solution to the KdV equation and compute the nonlinear spectrum using 
the DST algorithm; the results are compared directly to the theoretical DST spec- 
trum for the N-soliton solution. The numerical DST spectrum will differ in general 
from the exact spectrum mainly because of discretization errors (the truncation and 
roundoff errors have already been shown to be rather small). The principal conse- 
quence of discretization errors is the generation of a spurious continuous spectrum. 
We explore how these computational errors affect the DST spectrum and how the 
errors themselves are modified by changing the discretization step size. 

As discussed in I the wave amplitude function ~(x, 0) is discretized into M points; 
then a piecewise constant wave form is associated with the discrete input as shown 



NONLINEAR FOURIER ANALYSIS FOR KdV, II 333 

in Fig, 1 of I. The DST algorithm furnishes the exact nonlinear spectrum of the 
piecewise constant wave form, which approaches the spectrum of the continuous 
wave amplitude function as M--f GO and the discretization step Ax + 0. In what 
follows, “discretization error” will include not only the effect of discretizing the 
wave amplitude function q(x, 0) but also the effect of replacing it with a piecewise 
constant function. Another important error is that due to approximating some 
theoretically computed or measured wave amplitude or pulse by a finite-length time 
series. Since we are dealing with an infinite-line Cauchy problem. the pulse is 
assumed to vanish rapidly as 1x1 + ~3. In the truncation of the signal to a finite 
length there will always be the possibility of creating “shoulders” at the end of the 
series where the amplitude abruptly drops to zero. In all results presented in this 
paper we shall eliminate this source of error by truncating the wave forms only after 
they have decayed to an amplitude smaller than the selected precision of the input 
wave. In this way errors of this type do not enter in the present analysis. 

5.A. Cases for One and TWO Solitons 

We first consider the one and two soliton solutions of the KdV equation. For 
these two cases the N-soliton solution reduces to simple formulas which do not 
require numerical matrix inversion (see the Appendix). These solutions to the KdV 
equation are therefore very precise and allow closer scrutiny of the errors than does 
the general solution. We therefore treat the one and two soliton cases separately; 
greater numbers of solitons are considered below in Section 5.B. 

First we consider a single soliton of amplitude yl, = 8.0 cm in water of depth 
h = 10 cm. In the examples which follow we have considered an input wave from 
- 300 cm <s < 200 cm and thus L = 500 cm. We choose the phase shift of the 
soliton to be identically zero so that the wave is centered at the origin. We then 
consider live cases corresponding to various values of Ax in decreasing order: 
5.0 cm, 2.0 cm, 1.0 cm, 0.4 cm, and 0.2 cm. In Fig. 8a we show the single soliton 
considered along with the associated piecewise constant signal for the case 
Ax = 5.0 cm. One may argue that the discretization is obviously too coarse to give 
useful results. However, we present this case to ensure that we also gain information 
about error behavior for badly resolved data. The best resolution we consider, 
n.v = 0.2 cm, is so fine as not to be observable in the space series because it is within 
the resolution of the plotter. 

In Fig. 8b the results of the spectral analysis of the single soliton, for the live dif- 
ferent values of Ax, are shown. For the one-soliton spectrum considered in Fig. 8b 
it is evident that the continuous spectrum is rapidly decreasing with decreasing Ax. 
Even in the worst case considered (Ax = 5.0 cm) the continuous spectrum is at least 
two orders of magnitude below the saturation curve. In Table II we show the 
values of the discrete eigenvalues and of the phase shifts obtained by the DST 
program for the five cases. For the worst resolution (Ax = 5.0 cm) the error on the 
soliton amplitude was less than 1% and for the best resolution the eigenvalue is 
computed to five decimal places. Note also that the values of the phase shifts are 
always much smaller than Ax. 
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Figure 9a shows the two-soliton case; we consider the same live values for Ax 
considered before. The solitons have amplitude ql = 8.0 cm and y/Z = 6.0 cm and the 
input phase shifts are taken to be zero. The continuous curve corresponds to the 
exact solution and the piecewise continuous curve corresponds again to the worst 
resolution case dx = 5.0 cm. Figure 9b reports the DST spectra for the five cases 
considered. Again the level of the (spurious) continuous spectrum is rapidly 
decreasing with Ax. Table III reports the soliton amplitudes and the phase shifts for 
the live values of Ax considered. Again one observes very small errors for the 
soliton amplitudes and values of the phase shifts which are much smaller than Ax. 

x - cm 

k - cm-’ 

FIG. 8. Single soliton solution of the KdV equation (a) and corresponding DST spectra (b). Both 

the exact solution and the discretized, piecewise constant wave for a discretization step dx = 5 cm are 

reported in (a). In (b) the upper curve is the saturation spectrum and the other five curves (top to bottom) 

represent the continuous DST spectra for decreasing values of Ax ( = 5.0, 2.0, 1.0, 0.4, and 0.2 cm). The 
vertical line represent the discrete sohton eigenvalue. 
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TABLE II 

Discrete (Soliton) Eigenvalues and 

Phase Shifts Computed by the DST 

Algorithm for a Single Soliton 

Solution with Different Values of the 

Discretization Step Ax. 

Ax (cm) rl~ (cm) I( ) 
5.0 7.94755 ol”4& 
2.0 7.99149 0.006765 
1.0 7.99787 0.001606 
0.4 1.99966 O.OG0166 
0.2 7.99991 o.oooo40 

exact 8.0 0.0 

No/e. The last represents the exact 

results. 

-150 -100 -50 0 50 100 
x - cm 

0.1 

k - cm-l 

FIG 9. Two-soliton solution of the KdV equation (a) and corresponding DST spectra for different 

values of the discretization interval (b). Same details as in Fig. 8. 
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TABLE III 

Discrete (Soliton) Eigenvalues and Phase Shifts 

Computed by the DST Algorithm for 

a Two-Soliton Solution with Different Values 

of the Discretization Step dx 

Ax (cm) 711 (cm) XI (cm) r)2 (cm) x2 (cm) 
5.0 7.98719 -0.008197 3.98256 0.095050 
2.0 7.99793 -0.001655 3.99718 0.014654 
1.0 7.99949 -0.ooO667 3.99930 0.003161 
0.4 7.99987 -0.000414 3.99982 0.000295 
0.2 7.99992 -0.000383 3.99989 -0.000047 

exact 8.0 0.0 4.0 0.0 

Note. The last represents the exact results. 

5.B. Cases for N Solitons 

We now consider two cases with a larger number of solitons, for which the 
numerical implementation of the N-soliton (matrix inversion) algorithm is required. 
The first case is a pure three-soliton wave form which is shown in Fig. 10a together 
with the discretized wave for Ax = 5 cm. The soliton amplitudes are ye, = 8 cm, 
q2 = 6 cm, and q3 = 4 cm. We have selected a zero phase shift for each soliton. 
Figure lob reports the DST spectra obtained for the five cases Ax = 5 cm, 2 cm, 
1 cm, 0.4 cm, and 0.2 cm. The continuous DST spectrum is rapidly and monotoni- 
cally decreasing as Ax decreases. Table IV reports the amplitudes and phase shifts 
computed by the DST algorithm for the different values of Ax. Note again that the 
soliton amplitudes are computed with a small error, even with a very coarse 
discretization step, and that the phase shifts are always much smaller than Ax. 

The next case considered is for a pure six-soliton solution of the KdV equation. 
This wave form and the discretized version with Ax = 5 cm are shown in Fig. 1 la. 
The soliton amplitudes have been selected to be vi = 8 cm, q2 = 7 cm, Y/~ = 6 cm, 
q4 = 5 cm, qs = 4 cm, and v6 = 3 cm. The input phase shifts of the solitons have been 
fixed to be zero. Figure 11 b reports the five DST spectra for the values of Ax pre- 
viously considered. Note that for Ax = 5 cm a seventh spurious soliton with a rather 
small amplitude is present in the DST spectrum. The amplitude of this eigenvalue 
is less than lop3 cm and occurs because of the coarseness of the discretization step. 
For Ax < 5 cm this spurious soliton is absent. Table V reports the soliton 
amplitudes and phase shifts computed by the DST algorithm. 

6. INVESTIGATION OF RANDOM NOISE ERRORS 

In this section we consider the DST spectra of signals obtained by superposing 
a random noise signal on a known wave form. The spectra of the noiseless wave 
and of the noise itself are assumed known, and we want to determine (a) how the 
DST spectrum of the noisy wave is modified from that of the noiseless wave form 
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TABLE IV 

Discrete (Soliton) Eigenvalues and Phase Shifts 

Computed by the DST Algorithm for a Three-Sohton 

Solution with Different Values of the Discretization Step d.u 

Ax (cm) rtt (cm) XI (cm) q2 (cm) x2 (cm) q3 (cm) x3 (cm) 
5.0 7.98989 -0.026109 5.98571 0.016600 3.97594 0.100626 
2.0 7.99835 -0.004241 5.99768 0.002631 3.99611 0.016136 
1 .o 7.99959 -0.001064 5.99942 0.000656 3.99903 0.004033 
0.4 7.99993 -0.000171 5.99991 0.000103 3.99984 0.000643 
0.2 7.99998 -0.WOO44 5.99998 O.OMO24 3.99996 0.000159 

CXXI 8.0 0.0 6.0 0.0 4.0 0.0 

NOPE. The last represents the exact results 

10 r,,.,.,,,.,.,.,,,,,,,.,.,“““““‘1 

-200 -150 -100 -50 0 50 loo 150 
x - cm 

10’ 

0.1 

k - cm-l 

FIG. 10. Three-soliton solution of the KdV equation (a) and corresponding DST spectra for different 

values of the discretization interval (b). Same details as in Fig. 8. 
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and (b) how the changes in the spectrum may be characterized. If the problem were 
linear, the total spectrum would be a simple superposition of the two spectra; this 
appealing feature is no longer true in general for nonlinear problems. Nevertheless 
we find that for a wide range of noise amplitudes an approximate spectral super- 
position is true in an average sense over much of the wavenumber range of the non- 
linear DST spectrum as well. 

To elucidate this behavior we now consider a pure three-soliton wave form 
q(x, t) on which we linearly superpose random white noise. The noiseless wave form 
is the three-soliton wave which has already been considered in the previous section; 
the characteristics of the three solitons are reported in Table VI. We have 
computed the three-soliton wave form at time t = 0 on the interval 
- 300 cm -C x < 200 cm, with discretization interval dx = 1.0 cm. We thus obtain a 
space series composed of 500 points and length L = 500 cm. 

10 .‘~~‘~‘r.‘.‘~~~....(~‘~~ll~.‘ll”~I1l.l 

(a) : 

-300 -200 -100 0 

x - cm 

0.1 

k - cm-l 

FIG. 11. Six-soluton solution of the KdV equation (a) and corresponding DST spectra for different 

values of the discretization interval (b). Same details as in Fig. 8. 
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TABLE V 

Discrete (Soliton) Eigenvalues (a) and Phase Shifts 

(b) Computed by the DST Algorithm for a Six-Soliton Solution 

with Different Values of the Discretization Step dx 

ca ) Ax (cm) ql (cm) 112 (cm) q3 (cm) q4 (cm) rls (cm) 116 (cm) 
5.0 7.99412 6.99346 5.99217 4.99032 3.98694 2.91954 
2.0 7.99913 6.99893 5.99870 4.99839 3.99788 2.99670 
I .o 7.99978 6.99973 5.99965 4.99956 3.99946 2.99918 
0.4 7.99997 6.99995 5.99992 4.99989 3.99991 2.99987 
0.2 7.99999 6.99999 5.99996 4.99994 3.99997 2.99997 

exact 8.0 7.0 6.0 5.0 4.0 3.0 

(b) Ax(cm) xr (cm) x2 (cm) x3 (cm) xl (cm) 5( 1 6(‘ ) 
5.0 -0.027812 -0.015927 -0.00397 0.018854 ;04;1:3 ;096LIn25 
2.0 -0.004502 -0.002551 O.C00108 0.002880 0.007493 0.015443 
1.0 -0.001135 -0.000598 0.000217 0.000636 0.001545 0.003912 
0.4 -0.000190 -0.000050 0.000257 -0000001 -0.000140 0.000707 
0.2 -0.000055 0.000028 0.000260 -0.000079 -0.oGil370 0.000224 

exact 0.0 0.0 0.0 0.0 0.0 0.0 

339 

Note. The last line in each panel represents the exact results 

The noise signal n(x, 0) is random white noise obtained by 

n(x, 0) = i c, cos(kp - cjj) 
j= 1 

(6.1) 

for - 300 cm <x < 200 cm, such that again L = 500 cm. Note that in writing (6.1) 

TABLE VI 

Discrete (Soliton) Eigenvalues (a) and Phase Shifts 

(b) Computed by the DST Algorithm for a 

Three-Soliton Solution with Discretization Step du = 0.2 cm 

Contaminated by White Noise with Standard Deviation 0 

(a) 0 (cm) 
0.0 
0. I 
0.5 
1.0 
3.0 

rl~ (cm) 7-12 (cm) rl3 (cm) r14 (cm) 
8.0 6.0 4.0 

7.99238 6.0023 I 3.99730 
7.96315 6.01205 3.98596 O.(X)147 
8.05657 5.98644 4.00253 0.00319 
7.87175 6.10650 4.07980 0.07539 

(b)o (cm) XI (cm) x2 (cm) x3 (cm) x4 (cm) 

0.0 0.0 0.0 0.0 - 0.1 0.028935 -0.113102 -0.051125 
0.5 0.145547 -0.568520 -0.256233 -6056Oil 
1.0 0.070502 0.556035 -0.694561 -688.742 
3.0 5.607577 3.299054 3.992897 101.848 

Note. The first line in each panel represents the exact results in 

the absence of noise. 
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we have chosen t=O. The signal is discretized into 501 points (J= 501) with 
Ax = 1.0 cm. Here ki = jdk, where Ak = 2x/L and the phases I$, are uniformly 
distributed random numbers between 0 and 2~. For random white noise 

C, = C = const, 

c, = 0, 

where k,,, = z/Ax. The variance of the signal 

ki G km, 
ki > km,,, 

(6.1) is given by 

(6.2) 

02= c C;=JC2. 
,=I 

(6.3) 

In Fig. 12a we show one realization of formula (6.1) for (T = 0.1 cm. The signal is 
assumed to lie on the infinite interval -a < x < co, while being identically zero 
outside the interval - 300 cm < x < 200 cm. Figure 12b reports the DST spectrum 
and the Fourier spectrum of the pure noise of Fig. 12a; these spectra are graphically 
identical (due to the small wave amplitude used) and are given by the lower solid 
curve. The upper solid curve is the saturation level discussed in previous sections. 
The spectra have been graphed with the same scaling used previously. 

In Fig. 12b we also graph a horizontal dotted line representing the level given by 
C and a number of vertical solid lines corresponding to the discrete Fourier 
amplitudes Cj, each located at k,= j Ak. We note that formula (6.1) is valid for a 
periodic signal, while here instead we study the infinite-line problem. This inlinite- 
line representation of the noise causes changes in the Fourier spectrum of n(x, 0), 
namely: (a) the spectrum becomes continuous since the wavenumber resolution 
tends to zero; and (b) the spectrum extends to infinity beyond k,,,. This 
continuous spectral representation of the noise is given by the continuous line in 
Fig. 12b. 

We also note the importance of scaling the linear, infinite-line transform IF(k)1 
by 2/L: with this scaling F(k) is equal, for the wavenumbers given by ki= 2nj/L, to 
the discrete Fourier amplitudes C, of formula (l), as is shown in Fig. 12b. Here we 
have picked C, = C = const, and the continuous Fourier spectrum of the pure noise 
oscillates around the level given by C, which is thus a good measure of the intensity 
of the noise even in this infinite line problem. 

The first example we consider in our analysis of noise effects is for CJ = 0.1 cm. 
The wave field w(x, 0) = ~(x, 0) + n(x, 0) for this case is shown in Fig. 13a. In 
Fig. 13b we report the spectrum for w(x, 0). The top solid curve is the saturation 
curve (defined by b(k) = l), the middle solid curve is the DST continuous spectrum 
of w(x, 0) and the bottom solid curve is the continuous DST for the discretized 
wave form ~(x, 0) (since ~(x, 0) contains only solitons this spectral contribution 
constitutes only the numerical noise). This last curve represents the discretization 
errors (due to the characteristics of the algorithm itself) as discussed in Section 5. 
The dashed curve represents the Fourier transform of the pure noise n(x, 0). The 
dotted horizontal line is the level given by C. The discrete DST spectrum is 
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0.1 

k-cm’ 

FIG. 12. Pure white noise with CJ = 0.1 cm (a) and corresponding DST spectrum (b). The horizontal 

dashed line represents the level of the white noise (the constant C in Eq. (6.1)) and the vertical solid 

lines represent the Fourier spectral amplitudes used in the generation of the white noise signal 

(Eq. (6.1)). 

composed of three solitons as indicated by the arrows, The relevant quantities for 
these solitons are given in Table VI. 

As one can see the (noise-generated) continuous DST spectrum of w(x, 0) is very 
similar to the Fourier spectrum of the pure noise. The DST spectrum of w(x, 0) is, 
practically speaking, the superposition of the spectra for ~(x, 0) and n(x, 0) and the 
value of C gives a very good measure of the level of the continuous DST spectrum 
of W(X, 0). The discrete eigenvalues (the solitons) are changed only slightly by the 
presence of noise. 

In Fig. 13c we give the wave form obtained by taking the inverse spectral trans- 
form of the discrete part of the spectrum of w(x, 0) (solid line) and the original 
wave form ~(x, 0) (dashed line). The two curves coincide to within graphical 
precision: the noise has almost no effect on the recognition of the correct 



8 (4 : 

6 - 

,E , 4- 

5 .z 2 

“a 
3 0 

-2 - 

-4 ~~~~~~.~~‘~““~~“‘~‘~~~‘~“““““‘~“~~””” 
-300 -200 -100 0 100 200 

x - cm 

k-cd 

8 ~““‘,“““““,“,““““““““““““““{ 

6 - 

-2 ~........................,..............,....,....1 
-300 -200 -100 0 100 200 

x - cm 

FIG. 13. Three-Soliton wave form with superposed random white noise with u =O.l cm (a), corre- 

sponding DST spectrum (b), and reconstructed pure soliton solution (c). In (b) the upper solid curve 

is the saturation spectrum, the intermediate solid curve is the continuous DST spectrum of the wave in 

Fig. 13a, the lower solid curve is the spurious continuous spectrum generated by the discretization 

procedure, the long dashed curve is the Fourier spectrum of pure noise and the horizontal short-dashed 

line is the level given by C (Eq. (6.3)). The vertical lines represent the soliton eigenvalues. In (c) both 

the reconstructed wave (solid line) and the exact three-soliton solution (dashed line) are drawn. In this 

case the two curves are indistinguishable. 
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characteristics of the solitons. We note that the inversion of the discrete soliton 
spectrum constitutes nonlinear filtering of the noise. This important point is 

discussed further below. 
In Fig. 14a we show the wave form w(x, 0) for the three-soliton case plus random 

white noise with standard deviation CJ = 0.5 cm. The noise is now rather intense. 
The spectrum of w(x, 0) is shown in Fig. 14b. Again the continuous DST spectrum 

is very similar to the Fourier spectrum of the pure noise n(.u, 0) and its level is very 
well characterized by C. The simple superposition of the spectra of ~(x, 0) and 
n(.u, 0) is slightly broken by the appearance of a very small discrete eigenvalue 
added to the original three. The characteristics of the solitons for this case are 
reported in Table VI in Fig. 14c we show (solid line) the wave form obtained by 
inverting the discrete part of the spectrum presented in Fig. 14b (nonlinearly 
filtering out the noise), compared to the original wave ~(x, 0) (dashed line). The 
differences between the two curves (barely within graphical precision) are mainly 
due to a small phase shift of the solitons, introduced by the presence of the noise. 

We note here that if we consider the added random noise as a model for 
experimental errors present in a measured wave signal, the two cases presented 
above are the significant ones. Noise more intense than the above is (hopefully) 

hardly ever found in experimental data. Thus, the two cases we now discuss are 
considered to be extreme examples of the ability of the DST algorithm for finding 
the important nonlinear characteristics of a signal, even when they are deeply 

hidden in very intense noise. Figure 15a shows a case with CJ = 1.0 cm. The original 
wave form is quite obscured by the noise. The spectrum for this case is shown in 
Fig. 15b. The continuous DST spectrum and the Fourier spectrum are very similar; 

here a sort of superposition holds and C gives a good measure of the level of the 
continuous DST spectrum (due entirely to the noise) for n(x, 0). A fourth spurious 
soliton with low amplitude is present in the DST spectrum. In Fig. 15~ we show the 
reconstruction of the signal associated with the discrete DST spectrum (solid line) 
and the original wave ;rl(~, 0). The presence of the fourth soliton is not very 
evident and the two curves differ only slightly, mainly by the phase shifts of the 

reconstructed solitons. Again see Table VI for a collection of the characteristics of 
the discrete DST spectrum for this case. The power of nonlinear spectral analysis 
based on the DST algorithm is clearly evident at this point: even if the solitons are 

almost completely obscured by the noise as in Fig. 15a, the DST spectrum furnishes 
a clear interpretation of the components. 

The last case considered is shown in Fig. 16a (note the change of the vertical 
scale). Here 0 = 3.0 cm. The original wave is almost completely erased by the noise. 
The spectrum is reported in Fig. 16b. One can clearly see the saturation of the 
continuous DST for k < 0.2 cm ~ ‘, and the related increase in amplitude and wave- 
number of the forth spurious soliton. We filter out the noise by inverting the 
discrete DST spectrum to give the signal in Fig. 16c (solid curve) compared to 
~(x, 0) (dashed curve). The fourth soliton is now evident, but again the three 
original solitons are only slightly changed and phase shifted. For this case as well 
the relevant parameters for the discrete eigenvalues are collected in Table VI. 
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FIG. 14. Three-soliton wave form with superposed random white noise with (r = 0.5 cm (a), corre- 

sponding DST spectrum (b), and reconstructed pure soliton solution (c). Same details as in Fig. 13. 
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FIG. 15. Three-soliton wave form with superposed random white noise with 0 = 1.0 cm (a), corre- 

sponding DST spectrum (b), and reconstructed pure soliton solution (c). Same details as in Fig. 13. 
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FIG. 16. Three-soliton wave form with superposed random white noise with 0 = 3.0 cm (a), corre- 

sponding DST spectrum (b), and reconstructed pure soliton solutin (c). Same details as in Fig. 13. 
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The conclusions of the above analysis of three interacting solitons plus noise may 
be summarized as follows: 

(a) For noise amplitudes not too great (not obscuring the original wave 
form) the continuous DST spectrum is very similar, on the average, to the Fourier 
spectrum of the pure noise. The level of the continuous spectrum is approximately 
characterized by the constant Fourier amplitude C. 

(b) For low noise levels an approximate superposition between the original 
wave and the noise holds, even in the presence of nonlinear effects. The above 
analysis was conducted considering an original wave form with a purely discrete 
DST spectrum (e.g., only solitons). For a more general wave form, in which both 
solitons and radiation coexist, the continuous spectrum is a near superposition of 
the noiseless continuous spectrum and of the noise spectrum (except, possibly, at 
very low wavenumbers, where saturation and generation of low amplitude, spurious 
discrete eigenvalues may take place). 

(c) For large noise amplitudes spectral superposition holds for high 
wavenumbers, but at low wavenumbers the continuous DST spectrum becomes 
saturated (i.e., b(k) = 1). Part of the noise energy at low wavenumbers contributes 
to generation of a spurious (false) soliton whose wavenumber and amplitude 
increase with the noise intensity. 

(d) The discrete DST spectrum of the original wave remains robust for 
reasonable noise intensities. The amplitudes of the solitons are not disturbed very 
much, and the changes in amplitude are much less than the r.m.s. of the noise. 
There is also the possibility of a phase shift of the solitons due to the presence of 
the noise. The spurious soliton always has an amplitude less than the r.m.s. of the 
noise, and its wavenumber (and thus its amplitude) is probably related to the 
extent of the saturated region in the continuous DST spectrum. 

The results of this section indicate that the DST algorithm provides a rigorous 
tool for the nonlinear filtering of signals described by the KdV equation. While a 
linear filter would be unable to recover the soliton component from the noise back- 
ground, use of the DST approach furnishes a nonlinear spectrum in which the 
soliton and the noise components are well defined and may, therefore, be treated 
separately. If one is interested in the soliton component, for example, then the 
knowledge of the soliton amplitudes and phases (provided by the DST spectrum) 
and their use in an N-soliton algorithm allows a pure N-soliton wave form to be 
extracted from the noise. In the analysis above we have precisely followed this route 
and we have reconstructed the soliton signal originally obscured by noise. We 
expect nonlinear filtering to be important in the analysis of experimental data. 

7. SUMMARY AND CONCLUSIONS 

In this paper we have applied the numerical DST algorithm developed in 
the companion paper (I) to a number of example problems in order to test for 
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numerical precision. Roundoff errors have been analyzed by considering the DST 
spectra of positive and negative square input wave forms. The DST spectra for 
these waves can be computed exactly, allowing a comparison of theoretical and 
numerically computed spectra, and the DST algorithm was found to be influenced 
very little (and in a quite predictable way) by roundoff errors. Another important 
result is that the errors on the soliton amplitudes computed by the numerical DST 
are always of the order of the uncertainty on the input wave form; i.e., the input 
precision is essentially maintained by the algorithm and consequently the input 
errors are not amplified by nonlinear effects. 

We have also considered the errors introduced by discretization of the input 
wave form. To evaluate discretization errors we have considered a pure N-soliton 
solution for which the continuous spectrum is theoretically absent. As a result of the 
discretization a (spurious, small amplitude) continuous spectrum is produced. This 
allows for careful estimates to be made of the errors in the DST spectrum as a 
function of the discretization step. 

Since we are primarly interested in the application of the DST algorithm to 
experimental data we have also considered how the DST spectra are modified by 
the presence of random noise. To this end we have selected a pure three-soliton 
wave form and superposed a white noise signal on it. For noise amplitudes which 
do not completely mask the original wave form the DST spectra are the quasi- 
linear superposition of a discrete spectrum corresponding to the solitons and of a 
continuous spectrum which is, on the average, near the level of the noise intensity. 
For very low wavenumbers this superposition does not hold (since the continuous 
spectrum is saturated here), and additional spurious solitons can be generated by 
the presence of the noice. The amplitudes of these solitons is, however, always 
smaller than the noise intensity, and the original solitons are correctly identified, 
both in amplitude and phase, by the DST algorithm. For large noise amplitudes, 
such that the original wave form is almost masked by the noise, the solitons are still 
correctly identified. In this case, however, an energetic continuous spectrum and 
spurious solitons (always of amplitude smaller than the noise) are present. These 
extreme cases indicate that the DST algorithm may be successfully employed for 
extracting the soliton component from a strong background noise signal. This 
analysis also suggests that the DST approach can be used for the nonlinear filtering 
of signals described by the KdV equation. We hope that these results may provide 
a stimulus for the future use of nonlinear spectral analysis methods in the study of 
nonlinear phenomena. 

APPENDIX: ALGORITHM FOR THE N-SOLITON SOLUTION 

The exact N soliton solution of the KdV equation (Segur [30], Whitham [ 311, 
and cited references) is found when the radiation spectrum is identically zero, 
b(k) = 0. In this case the DST spectrum is given by 

DST= {K,, C,, N, 1 <n<N;b(k)=O}. (A.11 
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Explicitly the wave amplitude as a function of space x and time t is given by 

d-G t) = (2/J) 
d[Tr(P-’ dP,‘dx] 

d,x 

or equivalently by 

I?(,G t) = (2/j-) 
d* ln[det P] 

dx2 

(A.2) 

(A.3) 

Here Tr P denotes the trace of P, det P is the determinant of P, and ,I = ~/6/j’, see 
Eq. (2.1). The matrix P is of dimension N with elements P, given by 

(A.4) 

where ~5,~ is the Kronecker delta and i, j= 1, 2, . . . . N. Here K,,, C,, are the 
eigenwavenumbers and phase coefficients defined in the text. The eigenfrequencies 
Qi are given by 

Q; = K, (c,, + 4pK;) 

and cO is the linear phase speed. 

(A.51 

For the numerical implementation of the N-soliton solution we note that (A.3) 
requires the numerical evaluation of a double derivative, a procedure which can 
lead to a compromise in accuracy. To alleviate the problem we use (A.2) instead 
and rewrite it as 

q(x, t) = (2/n) Tr 

= (2/E.) Tr (A.61 

Explicit expressions are obtainable for the elements of dP/dx and d*P/dx*; this 
eliminates the need for numerical derivatives. It has also proven useful to redefine 
P by using the property that the wave field ~(x, t) is unchanged if each element of 
P is multiplied by the expression exp(K, dx). We thus write 

p =erw,+~-,)r w,+n,bl+ c, c, 
Jl 

(K+ K,) 

dP 

i ! 
- dx .,= (K,+K,)ellK,+X;)r~(D,+R,)rl 

1, 

=(K,+K)*er(K,+~,).~~(R,+R,)tl 
’ i 

(A.81 

With the definition (A.7) for P, the matrices dP/dx and d*P/dx* are diagonal. 

581.94.2-l 
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The remaining numerical operation is the inversion of P. However, det P is small 
for large negative values of x and large values of N. Using double precision 
arithmetic we have found good results up to about 10 solitons. 

In the case of a single-soliton or of a two-soliton solution of the KdV equation 
the N-soliton solution reduces to a simple analytical expression and no numerical 
inversion of P is required. For the single soliton, 

q(x, t)=v, sech*(K,(x-x1)-Q,t), (A.lO) 

where ye, is the soliton amplitude which is related to the soliton wavenumber K, by 
the formula 

&$ 
A 

(A.ll) 

and the phase shift x, is given by 

1 c: x-,=2K,ln 2~, 2 ( ) (A.12) 

where C, is the normalization coeffkient of the (single) eigenfunction corresponding 
to the eigenwavenumber K, and is defined in the text. 

In the two-soliton case the formula is written as 

X (A.13) 

where 

f,=Cjexp[Kj(x-xi)-Q,t]; .i= 1,2, (A.14) 

and K, and K, are the wavenumbers of the two solitons, Q, and Q, their frequen- 
cies, C, and C, are the normalization coefficients, and x1 and x2 are the soliton 
phase shifts which are given by (A.12) (interchange the subscripts for the second 
soliton). 
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